Chem. Ber. 105, 2398-2418 (1972)

Hans Schäfer und Ali Al Azrak

Anodische Addition anionisierter 1.3-Dicarbonylverbindungen an Olefine¹⁾

Aus dem Organisch-Chemischen Institut der Universität Göttingen

(Eingegangen am 7. Februar 1972)

Natrium-malonsäure-dimethylester (1), -acetylacetonat (2) und -acetessigsäure-methylester (3) lassen sich anodisch in Stromausbeuten zwischen 20 und 60% an Cyclohexen, Äthylvinyläther, Styrol, α -Methyl-styrol und Butadien addieren. Als Produkte werden additive Dimere (2.3-Diphenyl-butan-Derivate, 1.5-Diene) und bifunktionell substituierte Monomere (Acetale von γ -Ketoestern, cyclische Orthoester, 2.3-Dihydro-furane) isoliert. Die Bildung der Addukte dürfte mit der 1 e-Oxydation von 1–3 zu Bis-carbonyl-methyl-Radikalen beginnen, die sich an Doppelbindungen addieren. Die Primäraddukte stabilisieren sich durch Kombination zu additiven Dimeren und/oder werden anodisch zu Carbonium-Ionen oxydiert, die methanolysieren oder intramolekular cyclisieren.

Anodic Addition of Anionized 1.3-Dicarbonyl Compounds to Olefines¹⁾

Sodio-dimethyl malonate (1), -acetylacetonate (2) and -methyl acetoacetate (3) can be added anodically to cyclohexene, ethyl vinyl ether, styrene, α -methylstyrene and butadiene. Products are additive dimers (2.3-diphenylbutanes, 1.5-dienes) and bifunctional substituted monomers (acetals of γ -ketoesters, cyclic ortho esters, 2.3-dihydrofuranes). The product formation seems to be initiated by le-oxidation of 1-3 to bis(carbonyl)methyl radicals, which add to double bonds. These adducts combine to additive dimers and/or are oxidized to carbonium ions, which are solvolyzed by methanol or cyclize intramolecularly.

Die Reagensklasse der Anionen bietet eine Vielfalt an funktionellen Gruppen und Kohlenstoffgerüsten als Bausteine für die Synthese an. Erstaunlicherweise beschränkt sich die Verwendung dieses Reservoirs an Strukturelementen bisher fast ausschließlich auf nucleophile Substitutionen und Additionen. Den Anionen sollte jedoch eine universellere präparative Anwendung erschlossen werden, wenn man sie nach lebzw. 2e-Oxydation zu Radikalen bzw. Kationen in radikalischen oder elektrophilen Reaktionen einsetzt.

Als Oxydationsmittel erscheint die Anode aus mehreren Gründen besonders geeignet. Anodenmaterialien, wie Platin, Graphit oder Bleidioxid, sind chemisch weitgehend inert, im Gegensatz zu vielen chemischen Oxydantien, die unerwünschte nichtoxydative Nebenreaktionen auslösen. Die stufenlose Einstellung des Anodenpotentials nach Wunsch ermöglicht auch bei Anwesenheit mehrerer oxydierbarer Gruppen eine selektive Umsetzung; seine weite Variation zwischen -3.0 bis +3.5 V (gegen

Vorläufige Mitteilungen: ^{1a)} H. Schäfer und A. Al Azrak, Angew. Chem. 80, 485 (1968); Angew. Chem. internat. Edit. 7, 474 (1968); ^{1b)} H. Schäfer, Chemie-Ing.-Techn. 41, 179 (1969). - 9. Mitteilung über die anodische Oxydation organischer Verbindungen; 8. Mitteilung: H. Schäfer und D. Koch, Angew. Chem. 84, 32 (1972); Angew. Chem. internat. Edit. 11, 48 (1972).

nHE) gestattet die Anwendung auf mildeste wie durchgreifendste Oxydationen. Da elektrolytisch kein materielles Oxydans benutzt wird, entfallen Löslichkeitsprobleme, die mit chemischen Oxydationsmitteln besonders in nicht-wäßrigen Solventien häufig auftreten; ferner erübrigt sich die oft aufwendige Abtrennung der reduzierten Oxydationsmittel.

Das Anodenpotential²⁾ oder die Modifizierung der elektrischen Doppelschicht³⁾ erlauben es, Folgereaktionen reaktiver Zwischenprodukte zu steuern; solche Regler sind in den üblichen chemischen Umsetzungen nicht verfügbar. Da der geschwindigkeitsbestimmende Elektronenübertritt durch das Anodenpotential beschleunigt oder verzögert werden kann, ist die Temperatur ein frei wählbarer Reaktionsparameter, was präparativ vorteilhaft ist.

Wir entschieden uns, zunächst die Addition anodisch erzeugter Radikale an Doppelbindungen zu studieren und Versuche zur Dimerisierung vorerst zurückzustellen, da die anodische Dimerisierung von Anionen⁴⁾, insbesondere die der Carboxylate (Kolbe-Elektrolyse⁵⁾), bereits eingehender untersucht ist, während über anodische Additionen nur wenige Arbeiten vorliegen⁶⁾. Ferner sollte die Verknüpfung von Anionen mit nicht aktivierten Olefinen zahlreichere präparative Anwendungen eröffnen als die Dimerisierung. Schließlich würde das alternative Angebot von Bauelementen in der anodischen Addition die für Radikalketten- oder elektrophile Additionen gebräuchlichen Reagentien sinnvoll ergänzen.

Um Einblick in die präparativen Möglichkeiten und die experimentelle Problematik der anodischen Addition zu gewinnen, wurde die Elektrolyse anionisierter 1.3-Dicarbonylverbindungen in Gegenwart von Cyclohexen, Äthylvinyläther, Styrol, α -Methyl-styrol und Butadien untersucht.

1. Voltametrische Untersuchungen

Um eine einheitliche Umsetzung zu erzielen, werden bei der anodischen Addition nur die anionisierten 1.3-Dicarbonylverbindungen Natrium-malonsäure-dimethylester (1), -acetylacetonat (2) und -acetessigsäure-methylester (3) oxydiert, während Elektrolyt und Olefin bei den hierzu nötigen Anodenpotentialen elektrochemisch inert sind. Zur Auswahl entsprechender Elektrolyte wurden die Halbwellenpotentiale $(E_{1/2})$ von 1-3, dargestellt aus Malonsäure-dimethylester (1a), Acetylaceton (2a), Acetessigsäure-methylester (3a) und Natriummethylat, potentiodynamisch an einer rotierenden Platin-Scheibenelektrode in Methanol/0.5 m NaClO₄ als Elektrolyt ermittelt. Die gefundenen $E_{1/2}$ -Werte hängen stark von den Elektrolysebedingungen ab; sie verschieben sich mit steigender Stromdichte und abnehmender Methylat- bzw.

²⁾ V. D. Parker und L. Eberson, Chem. Commun. 1969, 340; V. D. Parker, ebenda 1969, 848.

³⁾ K. Nyberg, Chem. Commun. **1969**, 774; J. P. Coleman, J. H. P. Utley und B. C. L. Weedon, ebenda **1971**, 438; L. Eberson und R. G. Wilkinson, Acta chem. scand. **25**, (1971), im Druck.

 ⁴⁾ ^{4a)} N. L. Weinberg und H. R. Weinberg, Chem. Reviews 68, 449 (1968), dort S. 489, 498;
 ^{4b)} L. Eberson und H. Schäfer, Fortschr. chem. Forsch. 21, 1 (1971), dort S. 101.

⁵⁾ L. Eberson in S. Patai, The Chemistry of the Carboxyl Group, Kap. 2, Interscience Publishers, London 1969; l. c. ^{4b)}, S. 97.

⁶⁾ 1. c. ^{4a)}, S. 469; 1. c. ^{4b)}, S. 78.

1a-3a-Konzentration nach positiveren Potentialen; für 1 von +0.64 nach $+1.01 V^{7,8}$, für 2 von +0.74 nach $+1.0 V^{8}$ und für 3 von +0.68 nach +0.98 V.

Die logarithmischen Stromdichte-Potential-Kurven ergeben im Stromdichtebereich reiner Durchtrittshemmung Geraden mit Durchtrittsfaktoren $n \cdot \alpha$ zwischen 0.2 und 0.45. Die Grenzstromdichten sind auch bei hohen Umdrehungen der Scheibe (80 U/Sek.) proportional \sqrt{u} , was eine chemische Hemmung in der Elektrodenreaktion ausschließt⁹⁾. Die Grenzstromdichte ist bei überschüssigem 1a-3a proportional der Methylat-Konzentration und bei Überschuß von Methylat (für kleine 1a-3a-Konzentrationen: $\leq 5 \cdot 10^{-2} m$) proportional der Konzentration von $1a-3a^{10}$.

Das Fußpotential $(E_s)^{11}$ des Elektrolyten Methanol/0.5 *m* NaClO₄ beträgt bei einem Anodenstrom von 1 mA/cm² +1.1 V; d. h. dieser Elektrolyt ist beim Oxydationspotential von 1-3 elektrochemisch inert, allerdings schließt sein relativ niedriges Fußpotential die Anwendung von Anodenpotentialen, die +1.1 V erheblich überschreiten, aus. Obwohl diese Einschränkung mit Pyridin/0.2 *m* LiClO₄ ($E_s =$ +2.1 V), Dimethylsulfoxid/0.2 *m* LiClO₄ ($E_s =$ +1.6 V) oder Acetonitril/0.2 *m* NaClO₄ ($E_s =$ +2.4 V) entfällt, wurde Methanol als Solvens gewählt, da es 1-3 nicht protoniert [pK_s (MeOH): 16; pK_s (1a): 13.3; pK_s (2a): 8.9; pK_s (3a): 10.7], 1-3 zusammen mit dem Olefin ausreichend löst, und auf den Zusatz eines Leitsalzes verzichtet werden kann, da 1-3 in Methanol Elektrolyte genügender Leitfähigkeit ($\Lambda'_c \approx 10 \cdot \Omega^{-1} \text{ cm}^2 \text{ Mol}^{-1}$) bilden.

2. Präparative Elektrolysen

In der präparativen Elektrolyse wurde der Klemmenstrom (i_K) und das Anodenpotential (E_A) durch einen kombinierten Potentiostaten-Galvanostaten (P) kontrolliert (Abbild. 1).

An P ließen sich gleichzeitig ein zwischen 0 bis 5A wählbarer Klemmenstrom und ein Anodenpotential ($0 \le E_A \le + 3$ V) als Grenzwerte einstellen, die während der Elektrolyse nicht überschritten wurden. Um die Methanol-Oxydation zu verhindern, war $E_A \le +1.4$ V für Elektrolysen bei Temperaturen zwischen 0 und $+20^\circ$ bzw. $\le +1.6$ V für 0 bis -30° . In Einzelfällen trat bereits zu Beginn der Elektrolyse eine starke Passivierung der Anode auf, wodurch der Klemmenstrom bei $E_A = +1.4$ bzw. +1.6 V auf weniger als 0.05 Å erniedrigt wurde, was für präparative Umsätze zu lange Elektrolysezeiten, etwa 50 Stdn. für einen 100 mMol-Umsatz, erfordert. Hier wurde die passivierte Anode kathodisch regeneriert, indem man die Elektroden

⁷⁾ Alle angegebenen Potentiale beziehen sich, sofern nicht anders vermerkt, auf die Ag/ AgCl-Elektrode.

⁸⁾ Die in l. c. ^{1b}) angegebenen E_{1/2}-Werte wurden bei geringen Methylat-Konzentrationen in Methanol/Benzol als Elektrolyt ermittelt.

⁹⁾ K. J. Vetter, Elektrochemische Kinetik, S. 308, 444, Springer Verlag, Berlin 1961.

¹⁰⁾ Über eine weitergehende Analyse der Elektrodenkinetik soll an anderer Stelle berichtet werden.

¹¹⁾ Über Zusammenstellungen von anodischen und kathodischen Fußpotentialen ausgewählter Elektrolyte: C. K. Mann, Electroanal. Chem. 3, 57 (1969); l. c. ^{4b}, S. 26.

Abbild. 1. Blockschaltbild für die präparative Elektrolyse; P Galvanostat-Potentiostat, C Coulometer, B Ag/AgCl-Bezugselektrode, A Arbeitselektrode (Anode), G Gegenelektrode (Kathode)

durch einen elektronischen Impulsgeber periodisch umpolte. Der Klemmenstrom wurde dabei durch eine regelbare Gleichstromquelle vorgegeben, E_A an einem pH-Meter abgelesen und durch entsprechende Wahl der Schaltzeiten verhindert, daß Anodenpotentiale von +1.2 bzw. +1.6 V überschritten wurden. Der Stromverbrauch wurde entweder gravimetrisch mit einem Kupferplatten-Coulometer oder einem geeichten Gleichstromzähler ermittelt.

Da die Reduktionspotentiale von 1a-3a, der Olefine und der Addukte negativer als das Potential für die Wasserstoffabscheidung sind, werden Ausgangsverbindungen und Endprodukte kathodisch nicht verändert, weshalb eine ungeteilte Elektrolysezelle benutzt werden kann (Abbild. 2). In der Umlaufapparatur¹²⁾ wird der Elektrolyt durch Rühren in einem Schenkel an den Elektroden vorbeibewegt. Die Zelle ist mit zwei Platin-Blechelektroden, einer Kapillare zur Referenzelektrode, Thermometer und einer Gasfritte zur Stickstoffspülung ausgerüstet.

Abbild. 2. Elektrolysezelle; a Salzbrücke zur Bezugselektrode, A Arbeitselektrode, G Gegenelektrode, F Gasfritte, T Teflonstopfen

1972

¹²⁾ Die Apparatur wurde in Anlehnung an eine von S. Goldschmidt, W. Leicher und H. Haas, Liebigs Ann. Chem. 577, 153 (1952), Fig. 3, beschriebene Zelle konstruiert.

Im allgemeinen wurden ca. 0.1 Mol 1a-3a in Methanol zu 5-30% mit Natriummethylat in 1-3 umgewandelt. Während der Elektrolyse werden 1-3, synchron mit ihrem anodischen Verbrauch, durch die kathodische Wasserstoffentwicklung aus 1a-3a nachgebildet. 1a-3awurden nur zu etwa 70% umgesetzt, um die Anionisierung und anschließende Oxydation der ebenfalls CH-aciden Addukte zu unterdrücken. Der Elektrolyt enthielt ferner 10-80 ml Olefin, entsprechend 0.5-4m Lösungen. Bei Stromdichten von 10-50 mA/cm² und Temperaturen zwischen -20 und $+60^{\circ}$ wurde bis zu einem Stromverbrauch von 0.1-0.15F elektrolysiert. Falls nicht anders vermerkt, wurde die Stromausbeute als Maß für den Umsatz benutzt. Da die Olefine und 1a-3a im Überschuß eingesetzt wurden, ist der Stromverbrauch die Minderkomponente der Reaktion, auf die üblicherweise der Umsatz bezogen wird. Ferner läßt sich der Stromverbrauch coulometrisch rasch und exakt ermitteln, während eine quantitative Analyse des Umsatzes der Überschußkomponenten ungenau ist.

3. Addition an Cyclohexen

Bei der anodischen Oxydation von 1^{13} in Gegenwart von Cyclohexen entstehen bei 25° 8% 4, 12% 5, weniger als 1% 6, 8% 7 und 13% 8. Daneben fallen in geringer Menge mehrere hochsiedende Substanzen an, deren Charakterisierung zurückgestellt wurde. Das Adduktverhältnis 4:5 ist temperaturabhängig, es verschiebt sich von 0.6:1 bei 25° auf 1.2:1 bei 56°.

$$NaCH(CO_2CH_3)_2 \xrightarrow{-e, C_6H_{10}} \bigcirc CH(CO_2CH_3)_2 + \bigcirc CH(CO_2CH_3)_2$$

$$1 \qquad 4 \qquad 5$$

$$(CH_3O_2C)_2CHCH(CO_2CH_3)_2 + (CH_3O_2C)_2CHCH_2CH(CO_2CH_3)_2$$

$$6 \qquad 7 \qquad 8$$

4. Addition an Äthylvinyläther

Bei der Elektrolyse von 1 und Äthylvinyläther addieren sich gleichzeitig die Malonsäure-dimethylester-Gruppe und Methylat an die Doppelbindung unter Bildung des gemischten Acetals **9a**, das sich säurekatalysiert in absolutem Methanol zum entsprechenden Dimethylacetal **9b** umwandeln läßt. Mit **2**¹⁴ hingegen wird kein Methylat angelagert, sondern in einer oxydativen Cycloaddition das Dihydro-furanderivat **10** gebildet [Gl. (1)-(2)]:

$$(CH_3O_2C)_2CH-Na \xrightarrow{-c, H_2C=CHOC_2H_3} (CH_3O_2C)_2CH-CH_2-CH-OR$$
(1)
1 9a: R = C₂H₃
b: R = CH₃

$$\begin{array}{c}
CH_{3}CO-CH-Na \\
H_{3}C-C=O
\end{array} + \begin{array}{c}
CH_{2} \\
H_{1}C-CC_{2}H_{5}
\end{array} + \begin{array}{c}
CH_{2} \\
CH-OC_{2}H_{5}
\end{array} + \begin{array}{c}
CH_{3}CO-C \\
H_{3}C-C \\
H_{3}C-C \\
O \\
CH-OC_{2}H_{5}
\end{array}$$
(2)

 ¹³⁾ Zur anodischen Dimerisierung von 1: R. Brettle und J. G. Parkin, J. chem. Soc. [London] C 1967, 1352, dort weitere Literatur.

¹⁴⁾ Zur anodischen Dimerisierung von 2: S. P. Mulliken, J. Amer. chem. Soc. 15, 523 (1893).

5. Addition an Arylolefine

Bei der Elektrolyse von 1 in Anwesenheit von Styrol wurden mit 10% Stromausbeute das Diastereomerenpaar 11 und 43 bzw. 57% des Isomerengemisches 12a (ca. 70%) und 13 (ca. 30%) isoliert. Das 12a/13-Gemisch ließ sich weder gas- noch schichtchromatographisch auftrennen. Die quantitative Zusammensetzung ergab sich aus dem NMR-Spektrum, in dem die Benzyl- und Methylacetalprotonen von 12a bei tieferem Feld als die Benzyl- und Methylätherwasserstoffe von 13 erscheinen. Bei der sauren Hydrolyse des Gemisches wird 12a in 12b umgewandelt, während 13 unverändert bleibt.

 $\begin{array}{c} \overset{-\alpha, \ C_{6}H_{5}}{\text{NaCH}(\text{CO}_{2}\text{CH}_{3})_{2}} \xrightarrow{-\alpha, \ C_{6}H_{5}\text{CH}_{2}\text{CH}_{3}\text{O}_{2}\text{C}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{C}_{2}\text{CH}_{2}\text{CH}_{2}\text{C}_{2}\text{CH}_{2}\text{CH}_{2}\text{C}_{2}\text{CH}_{2}\text{C}_{2}\text{CH}_{2}\text{C}_{2}\text{CH}_{2}\text{C}_{2}\text{CH}_{2}\text{C}_{2}\text{C}_{2}\text{CH}_{2}\text{C}_{2}\text{C}_{2}\text{CH}_{2}\text{C}_{$

Die anodische Oxydation von 2 in Gegenwart von Styrol liefert 14a-16a und 17, deren Stromausbeuten bei verschiedenen Temperaturen und 2-Konzentrationen in Tab. 1 zusammengestellt sind.

[2]	T (%C)		Stromausbeute (%)			Produkt-
[Z] <i>m</i>	<i>I</i> (°C)	14a	15 a	16a	17	15a/16a
0.05	+20	15	38	_	6	-
0.045	-20	13	15	23		0.65
0.09	-20	15	35	12		2.9
0.225	-20	6	19	3	_	6.3

Tab. 1. Stromausbeuten bei der Elektrolyse von 2 in Gegenwart von Styrol in Abhängigkeit von der Temperatur und der 2-Konzentration

Die Elektrolyse von 3 mit Styrol führt bei $+20^{\circ}$ zu 6% 14b und 9% 15b; bei -20° gewinnt man unter sonst gleichen Bedingungen 8% 14b und 18% 15b. 14b läßt sich durch Ketonspaltung in 14a umwandeln.

Die anodische Oxydation von 3 in Gegenwart von α -Methyl-styrol liefert 14c-16cund 18. Die relativen Produktausbeuten werden hier, soweit die bisherigen Versuche diese Verallgemeinerung zulassen, durch das Anodenpotential, die 3-Konzentration und die Anwendung kathodischer Pulse beeinflußt.

Bei +1.45 V läßt sich mit 57% Stromausbeute das Isomerengemisch 16c (75%, NMR-Analyse) und 18 (25%) gewinnen. Wenn die Anode zur Regenerierung ihrer Aktivität kathodisch gepulst und gleichzeitig die 3-Konzentration erhöht wird, erhält man bei einem Anodenpotential zwischen +0.5 und +1.2 V mit 60% Stromausbeute ein Gemisch der 16c/18-Isomeren (ca. 85%) und 15c (ca. 15%) sowie in geringer Menge (weniger als 5% Stromausbeute) 19, das oxydative Dimere des α -Methyl-

styrols. 14c, das sich aus keiner der vorstehenden Elektrolysen isolieren ließ, fällt bei +0.5 bis +0.8 V, ohne Anwendung kathodischer Pulse, mit 5 bzw. 20% Stromausbeute an, wobei sich die 16c/18-Ausbeute auf 33 bzw. 12% vermindert.

6. Addition an Butadien

Bei der Elektrolyse von 2 in Gegenwart von Butadien entsteht mit 46% Stromausbeute ein Gemisch aus 20a - 22a. Dieses konnte weder gas- noch dünnschichtchromatographisch in die Komponenten zerlegt werden, doch ergab die Ketonspaltung mit 95% Ausbeute die Diketone 20b (56%), 21b (36%) und 22b (8%), die sich gaschromatographisch auftrennen ließen.

Entsprechend liefern 3 und Butadien mit 57% Stromausbeute 20c-22c, woraus mit Natriummethylat mit 89% Ausbeute die gaschromatographisch trennbaren, isomeren Dimethylester 20d (56%), 21d (37%) und 22d (7%) erhalten werden.

7. Diskussion

Erster Schritt der Reaktionsfolgen in Kapitel 3. -6. dürfte die 1e-Oxydation von 1, 2 oder 3 sein. Alle übrigen Komponenten des Elektrolyten: Methanol, Olefin, 1a, 2a oder 3a, scheiden als Elektronendonatoren aus, da sie bei den angewandten Anodenpotentialen elektrochemisch inert sind. Daß 1-3 nur *ein* Elektron unter Bildung der Radikale 24 abgeben und nicht durch 2e-Oxydation Bis-carbonyl-methyl-Kationen 30 liefern, muß noch durch potentiostatische Coulometrie gesichert werden. Die Annahme einer 1e-Oxydation wird jedoch durch 23 gestützt, dessen Bildung nur über 24 und 25 erklärbar ist. 24 kann dimerisieren und/oder sich an das Olefin zu 25 addieren. Es gelang nicht, 24 oder 25 durch rasche cyclische Voltametrie¹⁵⁾ (20 V/Sek.) oder Elektrolyse im Resonator eines ESR-Spektrometers nachzuweisen, was nicht überrascht, da die Lebensdauer der Radikale sicher unter der Auflösungs-

grenze beider Methoden ($\tau \ge 10^{-2}$ Sek.^{15, 16}) liegt. Bemerkenswert ist, daß die praktisch aktivierungslose Dimerisierung von **24** nur bei Cyclohexen (Kapitel 3.) nennens-

Chemische Berichte Jahrg. 105

¹⁵⁾ R. N. Adams, Electrochemistry at Solid Electrodes, Marcel Dekker, Inc., New York 1969.

¹⁶⁾ I. c. ¹⁵⁾, Kap. 10; J. K. Dohrmann und K. J. Vetter, J. electroanalyt. Chem. [Amsterdam] 20, 23 (1969).

wert mit der Addition konkurriert, während sie mit den reaktiveren Olefinen Äthylvinyläther, Styrol, α -Methyl-styrol und Butadien ausbleibt¹⁷, obwohl hohe Radikalstationärkonzentrationen an der Elektrode¹⁸ vorliegen, die die Dimerisierung begünstigen sollten.

24 addiert sich regiospezifisch zum energetisch günstigsten Addukt (Benzyl-, Allyl-, Äthoxymethyl-Radikal) an die Doppelbindung. Hierbei reagiert das ambidente Oxallylradikal 24 stets als C-Radikal; Produkte, die sich vom mesomeren O-Radikal ableiten, wurden nicht isoliert.

Die bevorzugte Reaktion von 25 scheinen die Kupplung zum additiven Dimeren 23 und/oder die Oxydation zu 26 zu sein. In welchem Verhältnis diese beiden Konkurrenzreaktionen ablaufen, hängt nach den bisherigen Befunden vom Substituenten Y im Olefin und dem angewandten Anodenpotential ab. Mit Y = OÄt entstehen Produkte, die sich von 26 ableiten, während mit Y = Vinyl vorwiegend 23 gebildet wird. Mit Y = Phenyl lassen sich 23 wie Folgeprodukte von 26 isolieren. Da in den Elektrolysen Anodenpotentiale zwischen +0.6 und +1.4 V angewandt wurden, könnte man die Befunde so deuten, daß das Äthoxymethyl-Radikal (25: Y = OÄt) unterhalb von +0.6 V, das Benzyl-Radikal (25: Y = Phenyl) zwischen +0.6 und +1.4 V und das Allyl-Radikal (25: Y = CH=CH₂) oberhalb +1.4 V oxydiert wird. Inwieweit diese Abschätzung gültig ist, läßt sich jedoch erst beurteilen, wenn man den Einfluß von Stromdichte, Anodenmaterial, Olefinkonzentration oder der Anwendung kathodischer Pulse (Kapitel 5., l. c.³⁾) auf das Verhältnis 23 : 26 kennt.

Bei der Addition von 2 bzw. 3 an Butadien (Kapitel 6.) ist 25 ein 3-substituiertes Allyl-Radikal 33a, b, das in 1.1-Stellung zu 20a bzw. c, in 1.3-Stellung zu 21a bzw. c

R'	
Î C≠O	33a: $R = R' = CH_3$
RCO-CH-CH ₂ -CH=CH=CH ₂	b: $\mathbb{R} = CH_3$; $\mathbb{R}' = OCH_3$

und in 3.3-Stellung zu **22a** bzw. c kuppelt. Die relativen Reaktivitäten für C-1 und C-3 in **33a**, b ergeben sich aus dem Adduktverhältnis gemäß:

22b(22d) : **20b(20d)** = k_{33} : $k_{11} = (r_3)^2$: $(r_1)^2$ ¹⁹⁾ = 1 (1) : 7(8), d. h. $r_1 : r_3 = \sqrt{7}$ ($\sqrt{8}$) = 2.65 (2.83).

C-1 ist demnach in 33a 2.65 mal, in 33b 2.83 mal reaktiver als C-3, obwohl C-1 eine niedrigere Spindichte als C-3 aufweist ²⁰⁾. Daß C-1 dennoch reaktiver ist als C-3, könnte durch die größere sterische Abschirmung der 3-Position bedingt sein. Der

¹⁷⁾ Bei der anodischen Addition von Natrium-2-nitro-propan an Olefine konkurriert die Dimerisierung wesentlich stärker; das Verhältnis Dimerisierung/Addition beträgt für Butadien 0.38, Styrol 0.6, Äthylvinyläther 2.65, Cyclohexen >11: H. Schäfer und H. W. Handiak, unveröffentlichte Versuche, 1971.

¹⁸⁾ In ihrer kurzen Lebenszeit diffundieren die Radikale nicht weit in die Lösung und reagieren daher in einer dünnen Schicht (Dicke: ca. 10⁻³ bis 10⁻⁶ cm) vor der Elektrode, was zu relativ hohen Radikalstationärkonzentrationen führt (ca. 10⁻⁶ bis 10⁻² m). Zur Abschätzung dieser Werte: Habilitationsschrift H. Schäfer, S. 65-71, Univ. Göttingen 1970.

¹⁹⁾ $k_{11} = k \cdot r_1 \cdot r_1, k_{33} = k \cdot r_3 \cdot r_3, r_1$ bzw. r_3 beschreiben den Unterschied der Rekombinationsgeschwindigkeiten in 1- bzw. 3-Position, bedingt durch sterische und elektronische Einflüsse; k = positionsunabhängige Rekombinationsgeschwindigkeitskonstante.

²⁰⁾ J. F. Bennett, B. Mile, A. Thomas und B. Ward in Adv. Phys. Org. Chem., V. Gold (Herausgeber), Vol. 8, 1, dort S. 22, Academic Press, London, 1970.

Reaktivitätsunterschied deckt sich qualitativ mit Befunden bei der Kupplung 3-substituierter Allyl-Radikale in der Gasphase (C-1: C-3 = 1.45^{21}), ist jedoch ausgeprägter.

Der Quotient

$$\frac{k_{13}}{(k_{11} \cdot k_{33})^{1/2}} = 1.7 \ (1.82)$$

indiziert eine nahezu statistische Verknüpfung der Allyl-Radikale²²⁾.

Bemerkenswert ist, daß mit Butadien keine *cis*-, sondern nur *trans*-23-Verbindungen gefunden werden, was mit Ergebnissen bei der anodischen Addition von Carboxylaten²³⁾ bzw. Grignard-Verbindungen²⁴⁾ an Butadien übereinstimmt. Im Gegensatz hierzu entstehen in der Gasphase aus 3-substituierten *trans*-Allyl-Radikalen durch Äquilibrierung vor der Kombination bis zu 33% *cis*-Dimere²¹⁾. Ob man allerdings die Stereospezifität an der Anode der radikalischen Addition an ein *trans*-Butadien zuschreiben kann, dessen Konformation durch Adsorption an der Anode fixiert ist, muß durch zukünftige Experimente geklärt werden.

Produkte, die sich von einer 25-Disproportionierung (4, 5) bzw. einer 25-Wasserstoffabstraktion (4, 5, 17) ableiten, sind Ausnahmen; gemischte Dimere zwischen 25 und 24 wurden nicht isoliert.

26 solvolysiert entweder zu 27 oder cyclisiert intramolekular durch elektrophilen Angriff des Carbonium-Ions am Carbonylsauerstoff bzw. der Hydroxylgruppe des Enols zu den Kationen 29 bzw. 28, die zu 31 deprotoniert werden oder zu 32 methanolysieren. Denkbar ist auch eine Umwandlung $32 \rightleftharpoons 31$ während der Elektrolyse.

Welche Reaktionsbedingungen gewählt werden müssen, um die bevorzugte Bildung von 23, 27, 31 oder 32 zu begünstigen, läßt sich aus den bisherigen Befunden nur ungenügend vorhersagen. Nach Tab. 1 nimmt mit wachsender Anionkonzentration der 31-Anteil zu. Durch ein hohes Anodenpotential wird die 31,32-Ausbeute verbessert (Kapitel 5., 14.1, 14.4); allerdings darf das Anodenpotential ± 1.2 V nicht erheblich überschreiten, um die Methanol-Oxydation zu vermeiden. Wie Stromdichte, Anodenmaterial, Elektrodenaktivität²⁵⁾ und Elektrolytzusammensetzung²⁶⁾ die Produktverteilung beeinflussen, soll durch weiterführende Versuche geklärt werden.

8. Schlußfolgerung

Anionisierte 1.3-Dicarbonylverbindungen lassen sich anodisch an nicht-aktivierte Doppelbindungen addieren, wodurch ihre bisher auf nucleophile Substitutionen und Additionen beschränkte Anwendung beträchtlich erweitert wird. Aus den vorliegenden Befunden ergeben sich folgende präparative Anwendungen: die Addition an Enoläther liefert eine neue Methode zur Darstellung von 1.4-Dicarbonylverbindungen;

²¹⁾ R. J. Crawford, J. Hamelin und B. Strehlke, J. Amer. chem. Soc. 93, 3810 (1971).

²²⁾ W. A. Pryor, Free Radicals, S. 14, 315, Mc Graw Hill, New York, 1966.

²³⁾ W. B. Smith und H. Gilde, J. Amer. chem. Soc. 81, 5325 (1959); 83, 1355 (1961).

²⁴⁾ H. Schäfer und H. Küntzel, Tetrahedron Letters [London] 1970, 3333.

²⁵⁾ Die wechselnde 14c-Ausbeute in Kapitel 14.4c könnte durch eine unterschiedlich passivierte Anodenoberfläche bedingt sein.

²⁶⁾ In Kapitel 13.2 wird durch Zugabe von NaClO₄ zum Elektrolyten die Bildung von 10 weitgehend unterdrückt, statt dessen isoliert man 1.1.4.4-Tetraäthoxy-butan (H. Schäfer, unveröffentlicht).

Arylolefine lassen sich einstufig und regiospezifisch unter Bildung von substituierten Tetrahydrofuranen und 2.3-Dihydro-furan-Derivaten in β -Stellung zum Arylrest alkylieren und in α -Stellung veräthern; mit Butadien werden disubstituierte 1.5-Diene zugänglich. Die Modifizierung der 1.3-Dicarbonylkomponente durch Alkylierung, Acylierung oder Michael-Addition sollte eine zusätzliche Variation der darstellbaren Strukturen gestatten.

9. Konstitutionsbeweise der Produkte

Die Verbindungen 4-8, 9b, 12b und 17 wurden an Hand von authentischen Präparaten identifiziert. Die Struktur aller übrigen Verbindungen ergibt sich eindeutig aus den analytischen und spektroskopischen Daten in nachstehenden Kapiteln und im Versuchsteil.

9.1 Additive Dimere mit Styrol und α-Methyl-styrol: 11, 14a und c

Den wichtigsten Strukturbeweis liefern die Massenspektren. Hier treten intensive Bruchstücke mit der Massenzahl M⁺/2 auf; für 11 MZ 235 (100%), für 14a 161 (65%) und für 14c 233 (65%). Diese durch Spaltung einer benzylischen C-C-Bindung gebildeten Fragmente stützen die formulierten Strukturen 11, 14a, c, wären aber auch mit 34a - c vereinbar, die durch radikalische Kopf-Schwanz-Dimerisierung von

	-	R	R'	$\mathbf{R}^{\prime\prime}$
<mark>Ŗ</mark> ' Ç ₆ H ₅ Ŗ'	a	OCH3	CO ₂ CH ₃	Н
RCO-CH-CH2-CR"-CH2-CR"-CH-COR	b	CH3	Н	Н
34 ^Ċ 6 ^{H₅}	c	CH3	$\mathrm{CO}_2\mathrm{CH}_3$	CH3

Styrol mit 24 entstehen könnten. Die Spitzen für die Massenzahlen 221, 147 und 219, die man für die Fragmente $RCO-CHR'-CR''-C_6H_5$ von 34a-c erwartet, fehlen jedoch in den Massenspektren von 11, 14a und c, wodurch Kopf-Schwanz-Dimere ausgeschlossen werden.

9.2 2.3-Dihydro-furan-Derivate: 10, 15a-c

10 und 15a zeigen im IR-Spektrum um 1600 bzw. 1670/cm intensive Banden, die die C=C-Doppelbindung des Enoläthers²⁷⁾ bzw. die $\alpha.\beta$ -ungesättigte Carbonylgruppe charakterisieren. Erwartungsgemäß sind diese Banden in 15b und c nach höheren Frequenzen, 1645 bzw. 1695/cm, verschoben; ihre Lage stimmt gut mit der entsprechender Banden in 4.5-Dihydro-furan-carbonsäure-(3)-methylestern überein²⁸⁾.

Daß es sich bei 10, 15a – c um 2-Methyl-4.5-dihydro-furan-Derivate handelt, die in 4-Stellung unsubstituiert sind, zeigt die Aufspaltung der 2-Methylprotonen zum Triplett durch "long range"-Kopplung mit den beiden Methylenprotonen (J =1.5 Hz). Die 5-Stellung des Phenyl- bzw. Äthoxyrestes, geminal zum Äthersauerstoff, folgt aus den nach niedrigen τ -Werten verschobenen Signalen für die Benzylwasserstoffe in 15a und b und dem Äthoxymethinproton in 10. 4-Substituierte 4.5-Dihydro-

²⁷⁾ C. H. Eugster, Helv. chim. Acta 40, 2462 (1957).

²⁸⁾ H. Machleidt und W. Grell, Liebigs Ann. Chem. 690, 79, dort S. 86 (1965); F. Boberg, A. Marei und K. Kirchhoff, ebenda 708, 142 (1967).

furan-Derivate 35a - d, die bei Addition von 24 als O-Radikal entstehen könnten, sind mit diesen NMR-Daten unvereinbar. Hier müßte das Signal der 2-Methylgruppe in 35a - c als Dublett, in 35d als Singulett erscheinen. Gleichzeitig sollten die Methinprotonen in 35a - c bei höherem Feld als beobachtet und die Methylenprotonen bei tieferem Feld auftreten.

		R	R'	R''
R"	a	CH3	OC_2H_5	Н
RCO-CC-R'	ь	CH3	C ₆ H ₅	Н
H ₃ C-C _O CH ₂	c	CH ₃ O	C_6H_5	Н
35	d	CH ₃ O	C_6H_5	CH_{3}

Die Tetrahydro-furan-Derivate 16a und c wurden im wesentlichen durch Umwandlung in 15a und c charakterisiert.

9.3 1.5-Diene: 20b,d-22b,d

Die Strukturzuordnung für 20b, d–22b, d ermöglichen die IR-Banden zwischen 900 und 1000/cm und die NMR-Signale zwischen τ 4.0 und 5.0 für die olefinischen Wasserstoffe. Im IR kennzeichnet eine Bande mittlerer Intensität bei 905/cm die endständige Doppelbindung und eine intensive Absorption bei 960/cm die 1.2-disubstituierte *trans*-Doppelbindung. Im NMR-Spektrum bilden die Vinylprotonen einer monosubstituierten Doppelbindung ein auffälliges Multiplett²⁹⁾ zwischen τ 4.4 und 5.1, während die *trans*-ständigen Olefinprotonen als relativ scharfes Singulett um τ 4.6 erscheinen³⁰⁾. Tab. 2 zeigt die entsprechenden IR- und NMR-Daten für 20b, d bis 22b, d.

	v [cm	⁻¹] für	τ (ppm) in CCl ₄ für		
		$-CH = CH_2$	H v = c H	$-CH=CH_2$	
	960	_	4.6 (s, 4H)		
21 b, d	960	905	4.7 (s, 2H)	4.4-5.2 (m, 3H)	
22 b, d	-	905	—	4.4-5.1 (m.6H)	

Tab.2. IR- und NMR-Daten für 20b, d-22b, d

Diese Daten kennzeichnen 20b, d als *trans.trans*-1.6-disubstituierte 1.5-Diene, 21b, d als *trans*-1.4-disubstituierte 1.5-Diene und 22b, d als 3.4-disubstituierte 1.5-Diene.

Der Deutschen Forschungsgemeinschaft sei für die großzügige Unterstützung dieser Arbeit durch Sachbeihilfen und die Gewährung eines Habilitandenstipendiums an H. Schäfer herzlichst gedankt. Herrn Professor Dr. G. Spiteller danken wir für die Aufnahme der Massenspektren.

²⁹⁾ H. Suhr, Anwendung der kernmagnetischen Resonanz in der organischen Chemie, S. 64, 150, Springer Verlag, Berlin 1965.

³⁰⁾ J. c. 29), S. 147.

Beschreibung der Versuche

10. Allgemeines

Die IR-Spektren wurden mit dem Beckman-Spektrophotometer IR 8, die Massenspektren mit dem Atlas-Massenspektrometer CH-4 und die ¹H-NMR-Spektren mit dem Varian Gerät A 60 aufgenommen. Die τ -Werte beziehen sich auf TMS als inneren Standard. Mole-kulargewichte bestimmte man in Benzol mit dem Mechrolab-Osmometer 301-A. Zur Gaschromatographie wurde das Perkin-Elmer-Fraktometer F 6 benutzt.

Zur Voltametrie benutzte man einen Potentiostaten 68 FR 0.5 der Fa. Wenking, kombiniert mit einem Funktionsgenerator 3310 A der Fa. Hewlett-Packard zur Erzeugung eines linearen Spannungsanstieges (im allgemeinen 0.36 V/Min.). Die Strom-Spannungskurven wurden auf einem Speicheroszilloskop 564 B der Fa. Tektronix dargestellt. Als Elektrolysezelle verwendete man das Gefäß EA 880-EA 876 der Fa. Metrohm, das auf 20° temperiert wurde. Ein Platinblech, das durch eine G 3-Fritte vom Anolyten abgetrennt war, diente als Gegenelektrode. Als Referenzelektrode wurde die Ag/AgCl-Elektrode EA 420 der Fa. Metrohm verwendet. Arbeitselektrode war eine Platinscheibenelektrode ($F = 28.3 \text{ mm}^2$), gekoppelt an einen variablen Antriebsmotor (0-100 U/Sek.) der Fa. Beckman. Zur präparativen Elektrolyse diente eine Umlaufapparatur (Abbild. 2) ohne Diaphragma. Als Elektrodenmaterial wurde Platinblech in den Abmessungen $0.05 \times 30 \times 70$ mm verwendet, das in einem Glasrahmen gefaßt war. Die leitenden Verbindungen bildeten mit Quecksilber gefüllte Glaskapillaren, in die jeweils ein Platindraht eingeschmolzen war, der zuvor bei Rotglut am Platinblech festgehämmert wurde. Als Halterung der Elektroden und Verschluß der Elektrolysezelle benutzte man einen Teflonstopfen, der mit fünf Bohrungen verschen war: zwei für Anode und Kathode, eine für die Salzbrücke zur Ag/AgCl-Bezugselektrode, eine für die Gasfritte zur Stickstoffspülung und eine für das Thermometer. Stromquelle war ein elektronischer Potentiostat TN 250-1250 \pm 10 V der Fa. Heinzinger, Rosenheim, oder ein 30-V-Gleichspannungsgenerator. Zur Umpolung der Elektroden wurde ein elektronischer Zeitschalter (Eigenkonstruktion) benutzt.

Das Anodenpotential wurde bei Umpolungen mit einem pH-Meter der Fa. Radiometer gemessen. Alle für präparative Elektrolysen angegebenen Potentiale gelten für den in Abbild. 2 dargestellten Abgriff an der Rückseite der Anode. Die genannten Potentiale sind Maximalwerte, die als Grenzwerte am Potentiostaten P eingestellt bzw. bei Umpolung am pH-Meter abgelesen wurden. Durch Strombegrenzung an P bzw. durch verkleinerte Überspannungen nach der Umpolung können die Anodenpotentiale während der Elektrolyse die Maximalwerte zeitweise um ca. 0.1-0.2 V unterschreiten.

Zur Säulenchromatographie (SC) wurde Kieselgel der Korngröße 0.05-0.2 mm, zur analytischen Dünnschichtchromatographie (DC) wurden lufttrockene, mit Kieselgel G beschichtete Platten und zur präparativen Dünnschichtchromatographie (DC) Kieselgel PF₂₅₄ der Fa. Merck AG, Darmstadt, verwendet.

Alle Lösungsmittel wurden destillativ gereinigt, Methanol und Äthanol absolutiert und die eingesetzten Olefine vor jedem Ansatz frisch destilliert.

11. Allgemeine Aufarbeitung der Elektrolyserohprodukte

Die elektrolysierte Lösung (220 ccm) wurde mit methanolischer Salzsäure oder 1n H₂SO₄ unter Eiskühlung vorsichtig neutralisiert. Das Solvens zog man im Rotationsverdampfer bei 60°/40 Torr weitgehend ab, versetzte den Rückstand mit 80 ccm einer gesättigten Natriumchlorid-Lösung und extrahierte dreimal mit je 80 ccm Äther. Die Ätherphase wurde gewaschen, über Natriumsulfat getrocknet und der Äther abgedampft. Vom Rückstand destillierte man das überschüss. Olefin und 1a-3a bei 12 Torr über eine Vigreux-Kolonne ab. Das verbleibende Rohprodukt wurde, wie im einzelnen beschrieben, weiter aufgetrennt.

12. Anodische Addition an Cyclohexen

Cyclohexen und 1: Eine Lösung von 0.85 g (38 mg-Atom) Natrium und 20 g (152 mMol) Malonsäure-dimethylester (1a) in 100 ccm Methanol und 100 ccm Cyclohexen wurde bei einer maximalen Anodenspannung von + 0.8 V (gegen Ag/AgCl) und einer Stromdichte von 5 mA/cm² bei 25° bis zum Verbrauch von 0.06 F elektrolysiert. Im Rohprodukt (17.1 g) wurden gaschromatographisch (2-m-Säule, 10% Äthylenglykolsuccinat auf Chromosorb P= EGS-Säule), 110°) mit Eichgemischen authentischer Verbindungen (Standard Naphthalin) 8.4 g 1a, 1.02 g (8%) 4, 1.57 g (12%) 5 und 40 mg (< 1%) 6 nachgewiesen. Aus der höher siedenden Fraktion (Sdp._{0.01} 100-140°) des Rohproduktes wurden durch SC (Petroläther 40-60°/Äther 2:1, v/v) 0.63 g (8%) 7 und 1.04 g (13%) 8 abgetrennt. 7 und 8 wurden durch Misch-Schmp. und Vergleich der NMR-Spektren mit authentischen Substanzen identifiziert. Weitere Substanzen, die in geringen Mengen im Elektrolysat enthalten waren, wurden nicht aufgeklärt.

Darstellung von [Cyclohexen-(2)-yl]-malonsäure-dimethylester (5): Zu 8.0 g (50 mMol) 3-Brom-cyclohexen-(1) in 100 ccm absol. Methanol wurden langsam 50 mMol 1 in Methanol getropft. Nach der üblichen Aufarbeitung erhielt man bei Sdp._{0.1} 90–95° 4.02 g (38%) 5.

NMR (CCl₄): τ 4.4 (m, 2 H, =CH), 6.3 (s, 6 H, CH₃O), 6.8 (d, 1 H, \geq CH), 7.3 (m, 1 H, allyl. \geq CH), 7.7-8.6 (m, 6 H, CH₂).

C₁₁H₁₆O₄ (212.2) Ber. C 62.21 H 7.60 Gef. C 61.95 H 7.38

Cyclohexylmalonsäure-dimethylester (4) erhielt man durch Normaldruckhydrierung von 5 mit Pt als Katalysator.

C11H18O4 (214.3) Ber. C 61.65 H 8.47 Gef. C 61.60 H 8.65

Bi-[cyclohexen-(2)-yl] (6) wurde durch Dimerisierung von 3-Brom-cyclohexen-(1) mit Magnesium dargestellt³¹⁾. Sdp._{0.1} 45-50°. – NMR (CCl₄): τ 4.35 (s, 2H, =CH), 7.7-8.7 (m, 7H).

1.1.2.2-Tetrakis-methoxycarbonyl-äthan (7) gewann man aus 1 mit Brom. Schmp. 136 bis 137°. – NMR (CDCl₃): τ 5.8 (s, 2H, \rightarrow CH), 6.2 (s, 12H, CH₃O)¹³⁾.

1.1.3.3-Tetrakis-methoxycarbonyl-propan (8) erhielt man durch Kondensation von 1 mit Formaldehyd¹³⁾. Schmp. 48-49°. – NMR (CDCl₃): τ 6.2 (s, 12H, CH₃O), 6.45 (t, 2H, >CH), 7.5 (t, 2H, CH₂).

Die Elektrolyse unter gleichen Reaktionsbedingungen, jedoch bei 56°, lieferte 11.5% 4 und 9.5% 5 (gaschromatographische Ausbeute).

13. Anodische Addition an Äthylvinyläther

13.1 Äthylvinyläther und 1: Eine Lösung von 14.6 g (110 mMol) 1a, 0.7 g (30 mg-Atom) Natrium und 40 ccm Äthylvinyläther wurde in 160 ccm Methanol bei einer Stromdichte von 25 mA/cm² und einer Anodenspannung von maximal +0.8 V bis zum Verbrauch von 0.162 F elektrolysiert. Die Destillation des Rohproduktes (17.1 g) lieferte zwei Fraktionen: a) Sdp.₁₂ 75-80° 4.0 g 1a, und b) Sdp._{0.01} 78-83° 7.1 g [2-Methoxy-2-äthoxy-äthyl]-malonsäure-dimethylester (9a) (37.5%, 38% bezogen auf umgesetztes 1a).

IR (Film): 1735 (CO₂CH₃), 1050, 1110/cm [C(OR)₂].

NMR (CCl₄): τ 5.6 (t, 1H, Acetal-H), 6.3 und 6.8 (je 1 s, dazwischen m, 12H, OCH₃, OCH₂ und \geq CH), 7.85 (d, 2H, CH₂), 8.85 (t, 3H, CH₃).

C10H18O6 (234.3) Ber. C 51.28 H 7.74 Gef. C 51.45 H 7.74

³¹⁾ F. Hofmann und P. Damm, Mitt. Kohlenforsch.-Inst. Breslau 2, 131 (1925), C 97 I, 2343 (1926), aus Beilstein 5, E II, 342.

9a liefert beim Erhitzen mit einer Spur *Toluolsulfonsäure* in *Methanol* das Dimethylacetal **9b**. Sdp._{0.01} 70-75°.

NMR (CCl₄): τ 5.7 (t, 1H, Acetal-H), 6.35 (s, 6H, CH₃O₂C), 6.5 (m, 1H, \geq CH), 6.8 (s, 6H, CH₃O), 7.9 (2 d, 2H, CH₂).

C₉H₁₆O₆ (220.2) Ber. C 49.09 H 7.32 Gef. C 49.27 H 7.42

9b zeigte gaschromatographisch (EGS-Säule, 170°) die gleiche Retentionszeit wie ein Vergleichspräparat. Zur Darstellung des Vergleichspräparates wurden äquimolare Mengen von 1 und 2-Brom-acetaldehyd-diäthylacetal in Methanol 5 Stdn. unter Rückfluß erhitzt. Das Rohprodukt wurde mit einer Spur Toluolsulfonsäure umacetalisiert. Neben den Ausgangsverbindungen erhält man bei Sdp._{0.01} 70-75° 10% 9b.

13.2 Äthylvinyläther und 2: Eine Lösung von 15 g (150 mMol) Acetylaceton (2a) und 0.25 g (11 mg-Atom) Natrium in 130 ccm Äthanol und 70 ccm Äthylvinyläther wurde bei $+20^{\circ}$, einer Anodenspannung von maximal +0.9 V und einer Stromdichte von 28 mA/cm² bis zum Verbrauch von 0.185 F elektrolysiert. Die Destillation von 7 g des Rohproduktes (13 g) an einer Drehbandkolonne ergab bei Sdp._{0.01} 78-80° 2.7 g (32%) analysenreines 5-Äthoxy-2-methyl-3-acetyl-4.5-dihydro-furan (10). Die gaschromatographisch aus dem Rohprodukt ermittelte 10-Ausb. betrug 36%.

IR (Film): 1665 (C=O), 1598 (C=C), 1215/cm (COR).

NMR (CCl₄): τ 4.55 (q, J = 7 und 3.5 Hz, 1H, Acetal-H), 6.0–6.5 (AB-Teil eines ABX₃-Spektrums durch Inäquivalenz der Methylenprotonen wegen benachbartem Asymmetriezentrum, 2H, OCH₂), 7.2 (m, 2H, CH₂), 7.8 (t, J = 1.5 Hz, 3H, CH₃), 7.9 (s, 3H, CH₃CO), 8.8 (t, 3H, CH₃).

Massenspektrum: MZ 170 (M⁺, 31%), 125 (M⁺ - C₂H₅O, 16%), 81 (Pyrylium-Kation³²⁾, 11%), 43 (CH₃CO, 100%).

C₉H₁₄O₃ (170.2) Ber. C 63.50 H 8.29 Gef. C 63.46 H 8.38

14. Anodische Addition an Styrol und a-Methyl-styrol

14.1 Styrol und 1: Eine Lösung von 18 g (136 mMol) 1a und 1.1 g (48 mg-Atom) Natrium in 120 ccm Methanol und 90 ccm Styrol wurde bei $+20^{\circ}$, einer maximalen Anodenspannung von +0.65 V und einer Stromdichte von 20 mA/cm² bis zu einem Verbrauch von 0.167 F elektrolysiert. Die Destillation des Rohproduktes ergab bei Sdp._{0.05} 114–115° 9.9 g (43%) 2.2-Dimethoxy-5-phenyl-3-methoxycarbonyl-tetrahydrofuran (12a) und [2-Methoxy-2-phenyläthyl]-malonsäure-dimethylester (13).

Das 12a/13-Isomerengemisch ließ sich weder schichtchromatographisch noch destillativ auftrennen. Die Strukturen sind jedoch durch nachstehende analytische und spektroskopische Daten eindeutig gesichert.

12a/13-NMR (CCl₄): τ 2.8 (5 H, aromat. H), 4.8 (d von d, J = 7 und 10 Hz, 0.35 H, Benzyl-H von 12a), 5.18 (d von d, J = 6.5 und 11 Hz, 0.35 H, Benzyl-H von 12a), 5.9 (t, 0.3 H, J = 7 Hz, Benzyl-H von 13), 6.3 (s, CH₃O₂C), 6.6–6.75 (4 s, 4.25 H, (CH₃O)₂C von 12a), 6.9 (s, 0.8 H, HCOCH₃ von 13), 7.0–8.0 (m, 2 H, CH₂). Da in 12a zwei Sorten von Benzyl-protonen und vier Singuletts gleicher Intensität für die Methylacetalwasserstoffe erscheinen, dürfte 12a als 1:1-Diastereomerengemisch vorliegen. In 13 stimmen die τ -Werte für das Benzylproton bzw. die Methylätherprotonen gut mit denen der vergleichbaren Wasserstoffe in *1.4-Dimethoxy-1.4-diphenyl-butan* mit τ 6.0 bzw. 6.9 überein.

³²⁾ G. Spiteller in Advances in Heterocyclic Chemistry, Vol. 7, S. 301, dort S. 305, Academic Press, New York, London 1966.

12a/13-Massenspektrum: MZ 266 (M⁺, 2%), 235 (15%), 234 (20%), 121 (100%), 115 (45%). Das intensive Fragment MZ 121 (C₆H₅CHOCH₃, 100%) dürfte **13** zuzuschreiben sein.

C14H18O5 (266.3) Ber. C 63.14 H 6.81 Gef. C 63.30 H 6.75

Das 12a/13-Gemisch ergab beim Erhitzen mit einer Spur *Toluolsulfonsäure* in 90 proz. wäßr. Methanol 80 % 12b/13-Gemisch.

2-Oxo-5-phenyl-3-methoxycarbonyl-tetrahydrofuran (12b) zeigte gaschromatographisch (EGS-Säule, 200°) die gleiche Retentionszeit wie ein authentisches Vergleichspräparat, dessen NMR-Spektrum sich mit dem von 12b deckte. Zur Darstellung wurden 220 mMol 1 in Methanol langsam bei $+5^{\circ}$ zu 220 mMol Phenacylbromid in Methanol getropft und danach 2 Stdn. unter Rückfluß erhitzt. Tiefsiedende Bestandteile des Rohprodukts wurden bei 80°/0.01 Torr abdestilliert und der Rückstand mit 200 mMol NaBH₄ reduziert, anschließend bis pH 2 angesäuert und aufgearbeitet. Die Destillation ergab bei Sdp._{0.01} 105-110° 4.2 g (9%, bez. auf Phenacylbromid) 12b.

IR (Film): 1780, 1740 (C=O), 1150 (COCH₃), 690, 770/cm (C₆H₅).

NMR (CCl₄): τ 2.9 (m, Phenyl-H), 4.41 (pseudo-t, J = 7 und 7 Hz, 0.5 H, Benzyl-H), 4.68 (d von d, J = 6 und 10 Hz, 0.5 H, Benzyl-H), 6.3-6.45 (mehrere s, Estermethyl), 7.0-8.0 (m, CH₂).

C₁₂H₁₂O₄ (220.1) Ber. C 65.45 H 5.49 Gef. C 65.60 H 5.69

3.1 g des Destillationsrückstandes (9.18 g) wurden durch präparative DC mit Benzol/ Äther (9: 1, v/v) aufgetrennt. Aus dem zweiten Band eluierte man 0.573 g eines Öls, aus dem sich durch Anreiben mit Äther ein Diastereomeres von 3.4-Diphenyl-1.1.6.6-tetrakis-methoxycarbonyl-hexan (11) in weißen Kristallen abschied. Schmp. 131.5-132.5° (aus Benzol/Petroläther).

IR (KBr): 1750 - 1730 (C=O), 770, 695/cm (C₆H₅).

NMR (CDCl₃): $\tau 2.5-3.1$ (m, 10H, aromat. H), 6.1-6.6 (mehrere s, 12H, Estermethyl), 6.7-8.5 (m, 8H).

Massenspektrum: MZ 470 (M⁺, 0.1%), 235 (100%), 197 (keine Spitze).

 $C_{26}H_{30}O_8$ (470.5) Ber. C 66.37 H 6.43 Gef. C 66.50 H 6.40 Mol.-Gew. 451 (osmometr.)

Aus dem dritten Band wurden 0.726 g des anderen 11-Diastereomeren als schwach gelbes Öl gewonnen, das sich nicht zur Kristallisation bringen ließ.

IR (Film): 1760 - 1730 (C=O), 770, 695/cm (Phenyl).

NMR (CDCl₃): $\tau 2.5-3.0$ (m, 10H), 6.1-6.7 (mehrere s, 12H), 6.6-8.5 (m, 6-8H).

Massenspektrum: MZ 470 (M⁺, 0.1 %), M⁺/2 (235, 100%), alle übrigen Spitzen unter 10%.

C₂₆H₃₀O₈ (470.5) Ber. C 66.37 H 6.43 Gef. C 66.23 H 6.42

Die Elektrolyse bei +0.8 bis +1.0 V und einer Umpolfrequenz von 0.04 Hz liefert bei einem Stromverbrauch von 0.122 F unter sonst gleichen Bedingungen 9.32 g (57% Stromausb.) eines Gemisches aus 12a (70%) und 13 (30%).

14.2 Styrol und 2 (vgl. Tab. 1, S. 2403).

a) Bei $+20^{\circ}$ und einem Molverhältnis Natrium/2a = 1:13: Eine Lösung von 15 g (150 mMol) 2a und 0.25 g (11 mg-Atom) Natrium in 130 ccm Methanol und 70 ccm Styrol wurde bei $+20^{\circ}$, einer Anodenspannung von +0.8 V und einer Stromdichte von 25 mA/cm² bis zu einem Verbrauch von 0.168 F elektrolysiert. Aus der Äther-Lösung des Rohproduktes fielen 4.2 g (15%) 5.6-Diphenyl-decandion-(2.9) (14a) aus; Schmp. 157-158° (aus Benzol).

IR (KBr): 1700/cm (C=O).

NMR (CDCl₃): τ 2.75 (m, 10H, aromat. H), 7.3 (m, 2H, Benzyl-H), 8.0 (m, 4H, CH₂CO), 8.15 (s, 6H, CH₃), 8.4 (m, 4H, CH₂).

Massenspektrum: MZ 322 (M+, 0.45%), 161 (65%), 91 (12%), 43 (100%).

C₂₂H₂₆O₂ (322.4) Ber. C 81.95 H 8.13 Gef. C 81.70 H 8.30 Mol.-Gew. 325 (osmometr.)

Nach Abtrennung von 14a verblieben 18 g Rohprodukt. 5 g davon wurden durch SC mit Äther/Petroläther (9 : 1, v/v) als Laufmittel aufgetrennt.

1. Fraktion: 0.43 g (5.7%) *I-Phenyl-pentanon-(4)* (17). - IR (Film): 1710 (C=O), 690, 750/cm (Phenyl).

NMR (CCl₄): τ 2.85 (m, 5H, aromat. H), 7.55 (m, 4H, Benzyl-H und CH₂CO), 8.05 (s, 3H, CH₃), 2.15 (m, 2H, CH₂).

Massenspektrum: MZ 162 (M⁺, 11 %), 104 (100 %).

C11H14O (162.2) Ber. C 81.46 H 8.70 Gef. C 81.44 H 8.67

17 zeigt gaschromatographisch (2-m-EGS-Säule, 150°) die gleiche Retentionszeit wie ein authentisches Vergleichspräparat, das aus *Bis(3-phenyl-propyl)-cadmium* und *Acetylchlorid* hergestellt wurde³³⁾.

2. Fraktion: 1.78 g (38%) 2-Methyl-5-phenyl-3-acetyl-4.5-dihydro-furan (15a); Sdp._{0.01} 118-123°. – IR (Film): 1670 (C=O), 1600 (C=C), 1220/cm (C=C-O).

NMR (CCl₄)³⁴: τ 2.75 (m, 5H, aromat. H), 4.5 (X-Teil eines ABX-Spektrums, J = 10 und 8.5 Hz, 1 H, Benzyl-H), 6.7–7.1 (m, 2 H, CH₂), 7.75 (t, J = 1.5 Hz, 3 H, CH₃C=), 7.9 (s, 3 H, CH₃CO).

Massenspektrum: MZ 202 (M+, 35%), 43 (100%).

C13H14O2 (202.3) Ber. C 77.20 H 6.98 Gef. C 76.93 H 6.87

b) $Bei - 20^{\circ}$ und einem Molverhältnis Natrium/2a = 1:20: Eine Lösung von 20 g (200 mMol) 2a und 0.23 g (10 mg-Atom) Natrium in 130 ccm Methanol und 70 ccm Styrol wurde bei -20° mit einer Anodenspannung von +0.8 V und einer Stromdichte von 25mA/cm² bis zum Verbrauch von 0.3 F elektrolysiert. Von 6 g des Rohproduktes (21 g) destillierte bei Sdp._{0.01} 100-122° ein Gemisch von 1.34 g (15%) 15a und 2.28 g (23%) 16a (NMR-Analyse aus dem Flächenverhältnis der Methoxy- : Phenyl-Protonen). 2-Methoxy-2-methyl-5-phenyl-3-acetyl-tetrahydrofuran (16a) wurde folgendes 1R- und NMR-Spektrum zugeordnet (Differenzspektrum des 15a/16a-Gemisches mit reinem 15a):

IR (Film): 1708 (C=O), 1150-1030/cm [C(OR)₂].

NMR (CCl₄): τ 2.8 (m, 5H, aromat. H), 5.1 (m, 1H, Benzyl-H), 6.5–6.8 (mehrere s, 3H, CH₃O), 6.9 (m, 1H, \rightarrow CH), 7.3 (m, 2H, CH₂), 7.85 (mehrere s, 3H, CH₃CO), 1.3–1.9 (mehrere s, 3H, CH₃). Für Methoxy- und Acetylprotonen erscheinen jeweils mehrere Singuletts, was auf ein Gemisch von Stereoisomeren hinweist.

16a ließ sich destillativ wie dünnschichtchromatographisch nicht analysenrein gewinnen, da es sich hierbei stets teilweise in 15a umwandelte. I g des Destillates ließ man mit 0.5 g pulverisiertem *Kaliumhydroxid* in 30 ccm Methanol über Nacht stehen. Nach Abziehen des Methanols wurde der Rückstand in der Kälte mit konz. Schwefelsäure neutralisiert und mit Äther extrahiert. Die Ätherauszüge wurden gewaschen und über Natriumsulfat getrocknet. Nach Abdampfen des Äthers verblieben 0.7 g reines 15a.

³³⁾ Analog einer Vorschrift aus F. Weygand und G. Hilgetag, Organische Experimentierkunst, S. 878, J. H. Barth Verlag, Leipzig 1964.

³⁴⁾ Das NMR-Spektrum deckt sich mit dem, welches K. lchikawa und S. Uemura, J. org. Chemistry 32, 493 (1967), für 15a beschreiben.

Der Destillationsrückstand (2.2 g) wurde mit 1 g pulverisiertem Kaliumhydroxid in 50 ccm Methanol 6 Stdn. unter Rückfluß gekocht. Nach der vorstehenden Aufarbeitung verblieben 1.8 g (13%) 14a; Schmp. 153-155° (aus Benzol).

c) Bei -20° und einem Molverhältnis Natrium/2a von 1:10: Wie unter b), jedoch mit 20 mg-Atom Natrium wurde bis zum Verbrauch von 0.27 F elektrolysiert. Von 5 g des Rohproduktes (21 g) destillierte bei Sdp._{0.01} 108-125° ein Gemisch aus 2.25 g (35%) **15a** und 0.85 g (12%) **16a** (NMR-Analyse). Der Destillationsrückstand (1.9 g) lieferte nach der Ketonspaltung, wie unter b), 1.5 g (15%) **14a**, Schmp. 152-153° (aus Benzol).

d) Bei -20° und einem Molverhältnis Natrium/2a = 1:4: Wie unter b), jedoch mit 50 mg-Atom Natrium wurde bis zu einem Verbrauch von 0.3 F elektrolysiert. 3 g des Rohproduktes (17 g) ergaben bei Sdp._{0.01} 101 – 125° 1.01 g (19%) **15a** und 0.19 g (3.1%) **16a** (NMR-Analyse). Aus dem Destillationsrückstand erhielt man, wie unter b), 0.5 g (6%) **14a**, Schmp. 153–155° (aus Benzol).

14.3 Styrol und 3

a) Bei $+20^{\circ}$. Eine Lösung von 25.5 g (220 mMol) Acetessigsäure-methylester (3a) und 0.3 g (13 mg-Atom) Natrium in 110 ccm Methanol und 90 ccm Styrol wurde bei $+20^{\circ}$, einer maximalen Anodenspannung von +0.9 V und einer Stromdichte von 20 mA/cm² bis zum Verbrauch von 0.33 F elektrolysiert. Die Fraktionierung von 4.5 g des Rohproduktes (23.6 g) ergab bei Sdp._{0.01} 110-113° 0.6 g (9%) 2-Methyl-5-phenyl-3-methoxycarbonyl-4.5-dihydro-furan (15b).

IR (Film): 1698 (C=O), 1645 (C=C), 1220 (=C-O), 1140, 1080/cm (C-O).

NMR (CCl₄): \pm 2.75 (s, 5H, aromat. H), 6.35 (s, 3H, CH₃O), 4.5 (X-Teil eines ABX-Spektrums mit J = 10 und 8.5 Hz, 1H, Benzyl-H), 6.9 (m, 2H, CH₂), 7.75 (t, J = 1.5 Hz, 3H, CH₃CO).

C₁₃H₁₄O₃ (218.3) Ber. C 71.55 H 6.46 Gef. C 71.68 H 6.53

1.5 g des Destillationsrückstandes (3.5 g) wurden in 30 ccm 5 proz. Natronlauge 12 Stdn. auf 60° erhitzt. Anschließend wurde mit 1 *n* HCl neutralisiert und dreimal mit je 25 ccm Äther ausgeschüttelt. Die Ätherauszüge wurden gewaschen und über Na₂SO₄ getrocknet. Nach Einengen fielen 0.18 g (6.2%) 14a aus, Schmp. 153–155°; Misch-Schmp. mit 14a aus 14.2: 154–156°.

b) Bei -20° : 29 g (250 mMol) 3a wurden mit 0.46 g (20 mg-Atom) Natrium in 120 ccm Methanol und 80 ccm Styrol bei -20° , einer Anodenspannung von +1.0 V und einer Stromdichte von 15 mA/cm² bis zum Verbrauch von 0.2 F elektrolysiert. Aus 2.5 g des Rohproduktes (16.5 g) eluierte man durch SC mit Petroläther (40-60°)/Äther (i:1, v/v) 0.6 g (18%) 15b und 0.5 g (8%) 4.5-Diphenyl-2.7-diacetyl-octandisäure-dimethylester (14b). 14b (1R: 1745, 1712/cm) wandelte man wie vorstehend in 0.32 g (6.6%) 14a um, Schmp. 155-157°.

14.4 a-Methyl-styrol und 3

a) Bei +1.45 V ohne Anwendung kathodischer Pulse: Eine Lösung von 25.5 g (220 mMol) 3a und 0.25 g (11 mg-Atom) Natrium wurde in 120 ccm absol. Methanol und 80 ccm frisch dest. a-Methyl-styrol bei +10°, einer maximalen Anodenspannung von +1.45 V und einer Stromdichte von 20 mA/cm² bis zum Verbrauch von 0.168 F elektrolysiert. 13.2 g des Rohproduktes (16.2 g) ergaben bei Sdp._{0.01} 115-125° 10.6 g 16c/18-Gemisch.

1R (Film): 1740 (CO₂CH₃), 1715 (Schulter, COCH₃), 695, 760/cm (Phenyl).

NMR (CCl₄): τ 2.7–2.9 (m, 5H, aromat. H), 6.4–7.0 (mehrere s, 7H, CH₃O₂C, CH₃OC und \geq CH), 7.3–8.1 (m, 2H, CH₂), 7.8 und 8.3–8.7 (mehrere s, etwa 6H).

Massenspektrum: MZ 264 (M⁺, 5%), 249 (15%), 232 (8%), 217 (20%), 135 (20%), 43 (100%). Davon sind **16c** zuzuordnen: MZ 232 (M⁺ – CH₃OH), 217 (M⁺ – CH₃OH – CH₃) und **18**: MZ 135 [C₆H₅C(CH₃)OCH₃], 43 (CH₃CO).

Die Enolform von 18 gibt sich in einer tiefroten Färbung mit Eisen(III)-chlorid zu erkennen. C₁₅H₂₀O₄ (264.3) Ber. C 68.17 H 7.63 Gef. C 68.50 H 7.50

Beim 16stündigen Erhitzen von 1 g des Gemisches auf 160° erhält man 0.61 g eines gelben Öls (Sdp._{0.01} 89–92°), das zu 75% (NMR-Analyse) aus 2.5-Dimethyl-5-phenyl-3-methoxycarbonyl-4.5-dihydro-furan (15c) besteht, welches durch DC (Benzol) rein isoliert wurde.

IR (Film): 1695 (konj. CO₂CH₃), 1640 (C=C), 695, 760/cm (Phenyl).

NMR (CCl₄): $\tau 2.6-2.7$ (m, 5H, aromat. H), 6.35 (s, 3H, CH₃O₂C), 6.95 (m, 2H, CH₂), 7.7 (t, J = 1.5 Hz, Spinentkopplung durch Einstrahlung bei $\tau 6.95$, 3H, CH₃C=), 8.35 (s, 3H, CH₃C).

C₁₄H₁₇O₃ (233.3) Ber. C 72.08 H 6.91 Gef. C 72.03 H 6.95

Die zweite Komponente des Öls, 4-Methoxy-4-phenyl-2-acetyl-valeriansäure-methylester (18), ließ sich selbst durch wiederholte DC (Benzol) nicht analysenrein isolieren.

1R (Film): 1740 (CO₂CH₃), 1710 (COCH₃), 695, 760/cm (Phenyl).

NMR (CCl₄): $\tau 2.7-2.9$ (m, 5H, aromat. H), 6.35 und 6.55 (2s, 3H, CH₃O₂C), 6.65 (m, 1H, \rightarrow CH), 7.0 (s, 3H, CH₃OC), 7.6-7.9 (m, 2H, CH₂), 7.9 und 8.05 (2 s, 3H, CH₃CO), 8.5 und 8.52 (2 s, 3H, CH₃C).

Die Verdoppelung der Signale für Methyl-, Acetyl- und Methoxycarbonylprotonen könnte dadurch bedingt sein, daß 18 in der Keto- und Enolform oder als Diastereomerenpaar vorliegt.

b) Bei +0.45 bis +1.2 V und Anwendung kathodischer Pulse: Bei der Elektrolyse wie unter a), jedoch mit 2 g (88 mg-Atom) Natrium, bei +20°, einem während der Elektrolyse stetig von +0.45 auf +1.2 V nachgestellten Anodenpotential und einem dem Anodenpotential alle 50 Sek. kurzfristig überlagerten kathodischen Puls erhielt man bei einem Stromverbrauch von 0.14 F 15.5 g Rohprodukt, das destillativ in drei Fraktionen aufgetrennt wurde: a) Sdp._{0.01} 55-118°: 0.45 g, b) Sdp._{0.01} 120-135°: 11.45 g, c) Sdp._{0.01} 135-155°: 0.9 g; Rückstand: 2.08 g.

Fraktion b) enthielt nach DC und IR-Spektrum (1740, 1710, 1695, 1640/cm) neben den Isomeren 16c und 18 etwa 15% (durch DC) 15c. Durch Erhitzen der Fraktion auf 160° erhielt man ein gelbes Öl, das zu 80% (NMR-Analyse) aus 15c besteht.

Aus Fraktion c) gewinnt man durch Digerieren mit Äther 2.5-Dimethoxy-2.5-diphenylhexan (19) in weißen Kristallen. Schmp. $92-93^{\circ}$ (aus Methanol).

IR (KBr): 1070 (COCH₃), 690, 760/cm (Phenyl).

NMR (CDCl₃): τ 2.82 (m, 10 H), 7.08 (s, 6 H), 8.43 (s, 4 H), 8.62 (s, 6 H).

C₂₀H₂₆O₂ (298.4) Ber. C 80.50 H 8.78 Gef. C 80.50 H 8.80

c) Bei +0.5 bis +0.8 V ohne Anwendung kathodischer Pulse: Bei der Elektrolyse wie unter a), jedoch mit 0.5 g Natrium, bei $+20^{\circ}$ und einem Anodenpotential zwischen +0.5 und +0.8 V erhielt man bei einem Stromverbrauch von 0.109 F 17.68 g Rohprodukt, aus dem bei Sdp._{0.01} 110-135° 5.27 g abdestillieren. Aus dem Destillationsrückstand (8.55 g) gewinnt man durch Digerieren mit Äther 1.3 g (5.2%) 4.5-Dimethyl-4.5-diphenyl-2.7-diacetyl-octandisäure-dimethylester (14c). Schmp. 170-171° (aus Benzol/Petroläther 100-120°).

IR (KBr): 1735, 1710 (C=O), 1200, 1135/cm (C-OCH₃).

NMR (CCl₄): τ 3.2 und 2.85 (m, 10H, aromat. H), 6.53 und 6.4 (je l s, 6H, CH₃O), 7.0-7.4 (m, 4H, CH₂), 7.6-8.0 (m, 2H, \geq CH), 8.17 und 8.00 (je l s, 6H, CH₃CO), 8.84

und 8.79 (je 1 s, 6 H, CH₃). Die Methoxycarbonyl-, Acetyl- und Methylprotonen erscheinen jeweils in zwei Singuletts im Verhältnis 1 : 2. Da sich durch Änderung der Lösungsmittelpolarität die Signale unterschiedlich verschieben, ihr Intensitätsverhältnis jedoch konstant bleibt, ist **14c** offenbar ein Diastereomerengemisch, obwohl der Feststoff scharf schmilzt.

Massenspektrum: MZ 466 (M⁺, 0.1 %), 435 (8 %), 233 (65 %), 215 (44 %), 43 (100 %).

C₂₈H₃₄O₆ (466.6) Ber. C 72.09 H 7.35 Gef. C 72.31 H 7.35

Mol.-Gew. 446 (osmometr.)

d) Bei der Elektrolyse wie unter c), jedoch mit 0.1 g Natrium, erhielt man bei einem Stromverbrauch von 0.27 F 27.8 g Rohprodukt, wovon bei Sdp._{0.01} 115-125° 5 g abdestillierten. Aus dem Destillationsrückstand fielen durch Digerieren mit Äther 12.6 g (20%) 14c aus.

15. Anodische Addition an Butadien

15.1 Butadien und 2: 30 g (227 mMol) 2a, 1.0 g (110 mg-Atom) Natrium und 80 ccm Butadien in 120 ccm Methanol wurden bei -10° , einer Stromdichte von 25 mA/cm² und einer Anodenspannung zwischen +0.8 bis +1.4 V bei einer Umpolfrequenz von 8 Sek. bis zum Verbrauch von 0.18 F elektrolysiert. Die Destillation des Rohproduktes (20 g) ergab bei Sdp._{0.01} 185-195° 12.7 g (46%) 20a-22a.

IR (Film): 1720, 1700 (C=O), 1600 (C=C-OH), 960, 905/cm (C=C).

NMR (CCl₄): τ 4.6-5.0 (m, etwa 4H), 6.4 (t, 1H [-CO]₂CH), 7.1 (breites s, 1H, enol. OH), 7.5-8.6 und 8.0 (mehrere m und 2 s, zusammen 20H).

C₁₈H₂₆O₄ (306.4) Ber. C 70.56 H 8.55 Gef. C 70.47 H 8.46

2.6 g (8.5 mMol) ließ man mit 0.3 g gepulvertem KOH in 30 ccm Methanol 15 Stdn. bis zum negativen FeCl₃-Test stehen. Nach Neutralisation und üblicher Aufarbeitung erhielt man 1.785 g (95%) **20b**-**22b**, Sdp_{-0.01} 100-105°.

IR (Film): 1710 (C=O), 1640, 960, 905/cm (C=C).

NMR (CCl₄): τ 4.6 (breites s, CH=CH), 4.5-5.1 (m, CH=CH₂), 7.5-8.6 (m, CH₂CO, CH₂CH=), 8.0 (s, CH₃CO).

C₁₄H₂₄O₂ (222.3) Ber. C 75.64 H 9.97 Gef. C 75.66 H 9.85

20b-22b wurden gaschromatographisch in die Komponenten aufgetrennt (6 m, AM-Säule, 200°):

5.6-Divinyl-decandion-(2.9) (22b), 8%. – IR (CCl₄): 1710 (C=O), 905/cm (C=C).

NMR (CCl₄): τ 4.4-5.1 (m, 6H, CH=CH₂), 7.75 (t, 6H, \rightarrow CH und CH₂CO), 8.0 (s, 6H, CH₃CO), 7.8-8.5 (m, 4H, CH₂).

trans-5-Vinyl-dodecen-(7)-dion-(2.11) (21b), 36%. – IR (CCl₄): 1710 (C=O), 905, 960/cm (C=C).

NMR (CCl₄): τ 4.7 und 4.4–5.2 (breites s und m, zusammen 5 H, CH=CH und CH=CH₂), 7.6–7.9 (m), 8.0 (s, 6 H, CH₃CO), 7.9–8.6 (m).

C₁₄H₂₄O₂ (222.3) Ber. C 75.64 H 9.97 Gef. C 75.72 H 9.88

trans.trans-Tetradecadien-(5.9)-dion-(2.13) (20b), 56%. – IR (CCl₄): 1710 (C=O), 960/cm (C=C).

NMR (CCl₄): τ 4.6 (breites s, 4H, CH=CH), 7.5–8.1 und 8.0 (m und s, zusammen 18H, CH₂CO, CH₂C= und CH₃CO).

C14H24O2 (222.3) Ber. C 75.64 H 9.97 Gef. C 75.71 H 9.88

20b wird unter Aufnahme von zwei Moläquivalenten Wasserstoff zum gesättigten Diketon hydriert, das bei der Spaltung mit Natriumhypobromit eine Dicarbonsäure liefert, die mit Decandicarbonsäure-(1.10) keine Schmelzpunktsdepression zeigt. 15.2 Butadien und 3: 33 g (220 mMol) 3a und 0.5 g (22 mg-Atom) Natrium in 80 ccm Butadien und 120 ccm Methanol wurden bei -15° , einer Stromdichte von 20 mA/cm² und einer Anodenspannung zwischen +1.1 bis +1.3 V bei einer Umpolfrequenz von 6 Sek. bis zum Verbrauch von 0.161 F elektrolysiert. Von 12.1 g des Rohproduktes (20.0 g) destillierten bei Sdp._{0.01} 165-175° 9.5 g (57%) der drei Isomeren 20c-22c.

1R (Film): 1730, 1710 (C=O), 1640, 960, 905/cm (C=C).

NMR (CCl₄): τ 4.65 (breites s, etwa 3.6 H, HC=CH), 4.6-5.0 (m, etwa 0.4 H, CH=CH₂), 6.3 (s, 6 H, CH₃O), 6.65 (m, 2 H, \geq CH), 7.6 (m, 4 H, CHCH₂CH=CH), 7.8 (s, 6 H, CH₃CO), 8.0 (m, 4 H, CH₂CH=).

C₁₈H₂₆O₆ (338.4) Ber. C 63.89 H 7.74 Gef. C 64.03 H 7.72

l g (2.95 mMol) 20c-22c wurden 12 Stdn. in 30 ccm *Methanol*/0.2 g *Natrium* bis zum negativen FeCl₃-Test unter Rückfluß erhitzt, wobei man 0.665 g (89%) 20d-22d, Sdp._{0.01} $100-105^{\circ}$, erhielt.

IR (Film): 1740 (C=O), 1640, 960, 905/cm (C=C).

NMR (CCl₄): τ 4.6 (breites s, etwa 4 H, CH=CH), 4.6-5.0 (m, etwa 1H, CH=CH₂), 6.4 (s, 6 H, CH₃O), 7.75 (breites s, etwa 7.5 H, CH₂CH=CH), 8.0 (breites s, 4.5 H, CH₂CO), 8.2 (m, 1.5 H, CH₂).

C₁₄H₂₂O₄ (254.3) Ber. C 66.12 H 8.72 Gef. C 66.43 H 8.72

Das Isomerengemisch wurde gaschromatographisch (6-m-Säule, 10% Apiezonfett M auf Chromosorb, 200°) aufgetrennt: 4.5-Divinyl-octandisäure-dimethylester (22d), 7%. – IR (CCl₄): 1740 (C=O), 1640, 905/cm (C=C).

NMR (CCl₄): τ 4.5–5.1 (m, 6H, CH=CH₂), 6.4 (s, 6H, CH₃O), 7.8–8.5 (m, etwa 10H).

trans-4-Vinyl-decen-(6)-disäure-dimethylester (21d), 37%. – IR (CCl₄): 1740 (C=O), 1640, 960, 905/cm (C=C).

NMR (CCl₄): τ 4.4-5.1 und 4.6 (m und breites s, zusammen 5 H, CH=CH₂ und CH=CH), 6.4 (s, 6H, CH₃O), 7.7 (breites s, CH₂C=), 8.0 und überlagert 8.0-8.5 (verbreitert. s, CH₂CO, und m, Methin-H und Methylen-H, zusammen etwa 11 H).

trans.trans-Dodecadien-(4.8)-disäure-dimethylester (20 d), 56 %. – IR (CCl₄): 1740 (C=O), 1640, 960/cm (C=C).

NMR (CCl₄): τ 4.7 (breites s, 4H, CH=CH), 6.4 (s, 6H, CH₃O), 7.7 (breites s, 8H, CH₂C=), 8.0 (breites s, 4H, CH₂CO).

[41/72]